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A computational procedure is outlined for efficient evaluation of four-center coulomb 
repulsion integrals using contracted Gaussian basis functions. By utilizing information 
common to a shell of basis functions (such as s, px, py, and pz) and by transforming to 
alternative axes within the contraction loops, this method achieves high efficiency. The 
technique has been incorporated into the GAUSSIAN-70 molecular orbital program. 

1. INTRoDDCTI~N 

One of the major computational tasks in ab initio molecular orbital theory is the 
evaluation of the two-electron interaction integrals 

(1) 

where yp -** are one-electron basis functions. These v-functions are commonly chosen 
to be contracted Gaussian functions (linear combinations of primitive Gaussian 
functions), 

YA= f &glc. (2) 
k=l 

The primitive functions g, have the form 

gk = x exp(-q& (3) 
where Lxk is a constant (exponent), r is the distance from the center of the function g, , 
and X = 1 for zero-order Gaussians (s-type), X = x, y, or z for first-order Gaussians 
(p-type), X = x2, y2, z2, xy, yz, or zx for second-order Gaussians, and so forth 
(x, y, z being Cartesian coordinates relative to the center of gJ. 
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A direct approach to this problem is substitution of the linear expansions (2) into (I) 
leading to a quadruple sum involving integrals ( g,gj 1 g,g,) similar to (1) but with the 
primitive g-functions. These can be evaluated analytically by methods originally due 
to Boys [l, 21. However, if there are K terms in each y-expansion (2), K4 such primitive 
integrals are required for each two-electron integral (~,,y~ I ~~9)~). Consequently, 
the computation time per contracted integral becomes long even for modest values of 
K and more efficient procedures are desirable. 

There are two features of Gaussian basis sets that can be exploited to achieve more 
rapid computation of the integrals (I). In the first place, the basis functions yll 
themselves are normally specified in sets which share common information. For 
example, three basis functions representing px-, py-, and pz-atomic orbitals on the 
same atom are usually chosen to have the same contraction coefficients in (2) and the 
same set of exponents 01~ so that they differ only by taking X = x, y, or z in (3). 
Improved efficiency is therefore possible if all 81 (34) integrals (1) involving such 
related y-functions are evaluated together, so that computation involving the common 
information is not repeated unnecessarily. Even greater savings may be achieved in 
the simultaneous evaluation of two-electron integrals involving second-order (d-type) 
Gaussians. Here the six atomic orbital components (X = x2, y2, z2, xy, xz, and yz) 
result in 1296 (64) integrals. Other benefits arise from the grouping of related atomic 
orbitals. For example, the magnitudes of two-electron integrals over individual 
Gaussian functions may be estimated from consideration of the expansion coefficients 
(dkA in (2)) and the Gaussian exponents (ale in (3)), information which is shared by 
atomic orbitals within a set. Therefore, it is possible to ascertain whether any member 
of an entire set of two-electron integrals (involving related atomic orbitals on up to 
four different centers) is large enough to warrant evaluation. If not, as is often the 
case for integral sets involving inner shell functions or those on far removed centers, 
then calculation of the entire set of integrals may be eliminated. The use of molecular 
symmetry in the calculation of two-electron integrals is also facilitated by the grouping 
of atomic orbitals into sets of related functions. Thus, instead of applying a molecule’s 
symmetry operations to individual two-electron integrals, it is possible, and far more 
efficient, to transform entire sets of integrals. 

A second approach to greater efficiency is modification to make those parts of the 
computation which have to be performed K4 times as simple as possible, even though 
this might require more elaborate procedures elsewhere. For example, it may be 
worthwhile to use a different system of coordinate axes in the innermost (K”) part 
of the computation and then transform the integrals to the prescribed axes at a later 
stage. Modifications of this sort may not be of any value for uncontracted basis 
functions but their utility is likely to increase rapidly with the degree of contrac- 
tion K. 

The purpose of the present paper is to outline some computational procedures 
which have been developed with these ends in mind. Only contracted s- and p-type 
basis functions will be considered although extension to d-type and higher is possible 
[3]. The procedures described are utilized in the ab initio molecular orbital program 
GAUSSIAN 70 which is generally available [4]. 
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2. DEFINITIONS, NOTATION, AND COORDINATE AXES 

We define a shell of contracted Gaussian basis functions as a set of plA , given by (2), 
which have the same center, the same expansion length K, and the same exponents illk 
(k = 1, 2 ... K). A single s-type contracted function (X = 1 in Eq. (3)) constitutes 
an s-shell. A set of threep-functions qua , yU , qZ , which differ only by the choice of X 
(x, y, or z) in (3), constitutes a p-shell. We can also define an sp-shell as a set of one 
s- and three p-functions q~~, q~~, qy, P)~ where vs has X = 1 and has the same 
exponents ak as yz, q+, , qz . However, the d-coefficients in (2) will generally differ 
from ps to 9h, P?~, vz . 

Since considerable computational savings can be achieved by grouping the basis 
functions into shells, it is often worthwhile to deal with sp-shells rather than p-shells 
separately. Further justification of this is that s- and p-type atomic orbitals are 
frequently located in similar regions of space. For example, the optimum exponents 
for 2s and 2p Slater-type atom orbitals are quite close. In the following discussion, 
we shall restrict ourselves to the evaluation of integrals involving sp-shells. The 
corresponding theory for s-shells, p-shells, or mixed cases is similar and need not be 
discussed explicitly. 

Let us consider the integrals arising from four sp-shells at different points A, B, C, D. 
There will be 256 (4”) such integrals which may be described collectively as (AB 1 CD). 
We shall suppose that the degree of contraction (K in Eq. (2)) is the same for all 
four shells. The individual basis functions on center A may then be written 

(4) 

where giA, is a primitive Gaussian function 

&AT = X,, exp(--ai,rA2). (5) 

Here the suffix Y runs over the four component functions with X,, = I, x.~ , y, , z,, 
for r = 1,2, 3, 4 (i.e., s, px, py, and pz primitives, respectively). x, , ya , and zA are 
Cartesian coordinates relative to center A and r, is the scalar distance to center A. 
Note that the exponent aiA is independent of the suffix r. A similar notation is used 
for the other shells. 

As mentioned in the introduction, it is helpful for computational efficiency to use 
several sets of Cartesian axes. We shall actually use three sets. The outermost, which 
will be termed axes-3, is the prescribed set to which the basis functions (4) are referred. 
The second intermediate set (axes-2) is determined by the points A, B, C, and D 
(Fig. 1). The z-direction is chosen to be along AB and the y-direction to be perpen- 
dicular to AB and CD (actually along the vector product AB x CD). The x-direction 
then completes a right-handed coordinate system. The origin for axes-2 is shown as 
on AB in Fig. 1. However, this location need not be specified as only relative position 
vectors are used. 
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AXES -3 lB 

FIG. 1. Intermediate Cartesian axes (axes-2) relative to prescribed axes (axes-3). 

Before describing the inner Cartesian axes, we note, following Boys [I], that 

exp( - o~<J~$ - ajBrBz) = Lp exp(--Cr,rp2) 

where rP is the distance from the point P with position vector 

P = o$[oci,A + nj,B], 

ap = o!jA t OljB . 

The constant L, is 
Lp = exp(- ~l~~q~ap'R:~), 

RAB being the AB distance. 

(6) 

(7) 

(8) 

(9) 

The point P lies on the line AB and depends on the contraction suffixes i and j. 
As a result of (6), the product of the primitive Gaussian giar at A and the primitive 
Gaussian gjBg at B can be expressed as a linear combination of primitive Gaussians gPj 
at P, 

giA?gjBs = c EPl.stgPt . (10) 

The EPTst are constants and the sum over t runs over the 10 primitive Gaussians of 
zero, first, and second order, 

XPj = 1, XP 9 YP 2 ZP T XP2, YP2, ZP2, XPYP , YPZP , ZPXP > (11) 

the coordinates being measured relative to P. For given i, j, there will be 16 products 
(10) (r, s = 1, 2, 3,4). Examples are 

giAl&Bl = LPgPl 9 

&Al&?2 = LPxB exp(-aPrP2) 

= LP(xBPgP1 + gP2h 

&A2&B3 = LPXA YE exp(-aPrP2) 

(12) 

(13) 

= LPcxAP yBPi?Pl + yBPgP2 + xAP!?P3 + 8PEh (14) 

Here X,, is the x-component of the position vector AP, etc. These relations apply 
in any of the coordinated systems considered. 
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In exactly the same way, products of primitive Gaussians gkcu at C and grD* at D 
can be written 

gkCugZDa = c Eouuwgow (15) 
w 

where Q is a point on the line CD 

Q = a~l,,akCc + ~zDDI, 

OIQ = akC + %D * 

We now define the inner Cartesian axes (axes-l) as shown in Fig. 2. The z-axis 
is again taken along the line AB (as in axes-2). The x-axis is chosen to pass through 
the point Q and the y-axis to complete the right-handed system. Note that the 
directions of axes-l depend on the position of Q but not on P. Transformation from 
axes-l to axes-2 is accomplished by rotation about the common z-axis. 

B 

P 

= Y 

+ 

D 
X 

Q 

C 

I A 

FIG. 2. Inner Cartesian axes (axes-l). 

3. COMPUTATIONAL PROCEDURE 

The integrals to be evaluated are (carobs 1 vc#&,) where the suffixes r, S, a, ZI 
take four values, giving 256 integrals in all. Using the expansions (4) and (IO), these 
may be written 

The sum over k, I is equivalent to a sum over distinct points Q and that over i, j to 
a sum over points P. Writing 

D QUV = dkcudzoa , (18) 
D ~rs = 4Ar&s 9 (19) 

the expression (17) takes the simpler form 
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Optimization of computational efficiency requires (1) that the summations in 
Eq. (20) are moved as far as possible to the right and (2) that the number of operations 
to the right of each summation is made as small as possible. The second requirement 
is met by working in axes-l to the right of the P-summation and transforming the 
results to axes-2 to the left of (i.e., after) the P-summation. This is possible because 
the orientation of axes-l is independent of the position of P on the line AB. 

Since the suffixes r, s, and w take on 4, 4, and 10 values, respectively, there will be 
160 integrals (giA,gjss j gow). However, only 88 of these are nonzero in axes-l. 
This is because the coordinate y (Fig. 2) must appear an even number of times. This 
reduction from 160 to 88 integrals is the main reason for switching to axes- 1. 

Further improvement can be achieved by noting that the computation of the 88 
three-center integrals ( giArgjBs I gQJ can be accomplished in part by operations 
which are independent of P. In fact, each such integral can be written as a linear 
combination of terms 

where the quantity r,,,,, depends only on the position of Q relative to A, B and on 
the exponent 01~ . We shall not give full expressions for the quantities r and A as it is 
easily confirmed from the general theory of the primitive integrals that such expres- 
sions are possible [l, 21. 

Making use of (21) full evaluation of the integrals can be accomplished by 

and 

52 Qrswm - - 1 D~~sA~~rswrn . 
P 

(22) 

(23) 

(24) 

There are still 88 nonvanishing integrals (23) in axes-l. After evaluation, they may be 
rotated to 160 values in axes-2 before the further summations in (22) are carried out. 

The program loop structure that is used in GAUSSIAN-70 to accomplish the 
computation is shown in Fig. 3. The outermost loop (actually four loops) is over the 
shells, denoted by A, B, C, and D. This is followed by computation of features 
independent of contraction indices, principally the direction cosines of axes-2 in the 
frame of axes-3. Next a preliminary P-loop is used to collect and store information 
which depends on the position of P but not on the position of Q. This includes the 
product of the first exponential on the right-hand side of (6), the inverse constant 
in (7), and Dprs from (19). After this, the main Q-loop and comparable information 
about Q (independent of P) are collected. The innermost part of the routine is the 
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Gaussian-70 
Location 

Begin ABCD-loop SHELL 
Information about A, B, C, D SINFO, SGEOM 

Begin preliminary P-loop PINF 
Information about P PINF 

End preliminary P-loop PINF 

Begin Q-loop SHELL 
Information about Q SHELL 

Begin P-loop SPllll 
Information requiring P and Q SPllll 
Increment %,,,m by DPJPQ~~~ (Eq. (24)) SPllll 
End P-loop SPllll 

Evaluate 88 integrals (v~?y~# 1 gQw) in axes-l (eq. (23)) SPllll 
Transform (~A*T~* 1 ger) to axes-2 giving 160 integrals ROT2 
Increment 256 integrals (y”‘ArqBa I vc,qnv) in axes-2 (Eq. (22)) TQllll 
End Q-loop SHELL 

Transform (v~+y~~ i ycu~& to axes-3 R31111 
End ABCD-loop SHELL 

FIG. 3. Loop structure of SHELL integral routine in GAUSSIAN-70 program [4] together with 
associated subroutines. 

P-loop (traversed K4 times for each set of shells). This collects information depending 
on P and Q and evaluates (usually by interpolation in a table) the functions 

F,(t) = jol u2m exp(-W2) du (n = O,..., 4), 
(25) 

t = (w + q))>-' WY&* ) 

that appear in the full expressions for the integrals [2]. In the remainder of the P-loop, 
the quantities DPrglPO,.swm are evaluated and added on to the parts of SOrswm 
already formed, thereby carrying out the summation over P in (24). The number of 
independent QnQrslom is actually only 70 and these can be calculated from the Fm(t) 
in less than 100 multiplications. This is the end of the P-loop. 

The evaluation of the 88 three-center integrals (23) takes place in the latter part of 
the Q-loop. This part of the process has to be carried out only K2 times. These integrals 
are then transformed to axes-2. This involves rotation about the common z-axis and 
increases the number of nonzero integrals to 160 (4 values for suffices r, s, and 10 
for w). In the final part of the Q-loop, the w-summation in Eq. (22) is carried out, the 
sum is multiplied by Douv , and is added as an increment to the partially formed 
integrals (~a,.~Bs / CJL-~~~J. This corresponds to the sum over Q in (22). The final 
transformation to the external axes-3 is then made outside of the Q-loop. 
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The high efficiency of this program structure can be illustrated by a count of the 
number of multiplications involved. For a single set of sp shells ABCD, producing 
256 integrals, this number is approximately 

N mu1t = 2400 + 1450P + 12OK4. (26) 

The very small K*-coefficient (i.e., multiplications inside the P-loop) is really achieved 
by extra operations, such as transformation of axes, in the outer parts. It follows that 
the procedure is most valuable for highly contracted functions. For K = 3 (as with 
the STO-3G basis [5]), the number of multiplictaions is about 26,000, approximately 
100 per complete contracted integral. Since a direct expansion in terms of integrals 
over primitive Gaussians would involve 34 = 81 component integrals per complete 
contracted integral, it is evident that major saving has been achieved. 

Some modifications of the procedure are necessary in special cases. If some of the 
points coincide, axes can be chosen with some element of arbitrariness. For example, 
if A and B coincide, the y-axis in Fig. 1 is still determined but the z-axis can be chosen 
as any direction perpendicular to the y-axis. If AB and CD are parallel [6], the y-axis 
in Fig. 1 can be in any direction perpendicular to AB. If some of the shells coincide 
(e.g., A = B or C = D), the number of distinct integrals is reduced so that duplicates 
must be rejected. 
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